
CS331: Algorithms and Complexity
Part IV: Greedy Algorithms

Kevin Tian

1 Introduction
In Part III of the notes, we saw how DP could be a powerful tool in algorithms requiring repeated
decisions. For example, in the unbounded knapsack problem (Section 3.3, Part III), we were given
the weights W and values V of n items, as well as a budget B. The problem required us to find
the count vector c ∈ Zn≥0 maximizing the total item value, i.e.,

∑
i∈[n] ciV [i], while staying within

the budget, i.e.,
∑
i∈[n] ciW [i] ≤ B. Our strategy was to use DP to decide which items to take, by

considering O(n) candidate subproblems at each step and using the best option recursively, taking
care to memoize solutions. This gave an O(nB)-time algorithm overall.

This seems like a lot of work for a problem which admits an intuitive heuristic: choose the most
valuable item every time. However, this heuristic can get us into trouble, since earlier decisions
can later limit our options. For example, if W = {1, 3}, V = {2, 3}, and B = 4, choosing items by
value fails to solve the problem: we can achieve a value of 8 by taking the first item four times (as
W [1] = 1), whereas taking the second, more valuable, item limits our achievable value at 5.

You might complain, the first item is “obviously” better than the second: while less valuable, it is
more valuable per unit of weight. This suggests choosing items ordered by their value density V [i]

W [i] ,
taking the most value-dense item first. This is also not optimal: if W = {2, 3}, V = {4, 7}, and
B = 4, the second item is more value-dense (73 >

4
2), but taking it limits our maximum achievable

value to 7, whereas obtaining value 8 (by taking the first item twice) is optimal.

Fortunately, under a slight modification to unbounded knapsack, our heuristic succeeds: allowing
for fractional counts. Here, we imagine each item is a divisible liquid, so we can take e.g., 1.5 units
of an item. Formally, in the fractional unbounded knapsack problem, the setting is the same as
unbounded knapsack, except we allow for fractional c ∈ Rn≥0, rather than forcing c ∈ Zn≥0. Our
goal is to compute the maximum possible value

∑
i∈[n] ciV [i] subject to

∑
i∈[n] ciW [i] ≤ B. We

claim that the following simple O(n)-time algorithm solves this problem optimally.

Algorithm 1: FracUnboundedKnapsack(W,V,B)

1 Input: W,V , two Array instances containing n numbers in R>0, B > 0

2 i? ← argmaxi∈[n]
V [i]
W [i]

3 return V [i?] · B
W [i?]

Algorithm 1 says to take only the most value-dense item. It is a greedy algorithm: an algorithm
which makes its decisions according to a pre-specified rule (e.g., maximum value density), rather
than via recursion and memoization, as in DP. There are many appealing properties of greedy
algorithms: they are straightforward to state, easy to implement efficiently, and intuitive.

On the other hand, one must take care when using greedy algorithms: they can often be incorrect if
the wrong selection rule is chosen. In fact, oftentimes there is no natural correct greedy rule at all.
For example, how do we know that, despite the failure of greedy algorithms for unbounded problem,
they actually succeed in the fractional variant? We gave a counterexample showing that greedy is
not optimal with integer counts, but how would one prove that it actually is always optimal when
fractional counts are allowed? These notes develop general guidelines and techniques for designing
greedy algorithms, and proving their correctness.

1

2 Rearrangement
One of the most powerful tools for arguing about the optimality of greedy algorithms is the rear-
rangement lemma (Lemma 1). This lemma is quite intuitive: it says that if you have two “amounts
of items to take” a1 and a2, and two “item densities” b1 and b2, if your goal is to take the most
total weight, you should take more of the larger-density item. It turns out this lemma is true even
when all of these values are fractional or even negative, making it very simple to remember.

Lemma 1 (Rearrangement lemma). Suppose a1 ≥ a2 and b1 ≥ b2. Then a1b1+a2b2 ≥ a1b2+a2b1.

Proof. It suffices to expand: (a1 − a2)(b1 − b2) ≥ 0 =⇒ (a1b1 + a2b2)− (a1b2 + a2b1) ≥ 0.

The main message of Lemma 1 is straightforward, yet it and its variations are surprisingly powerful
in proving optimality of greedy algorithms. We now give several examples of its use.

2.1 Fractional unbounded knapsack
Let us revisit the fractional unbounded knapsack example. We first simplify slightly: nothing
changes if the ith item instead has weight 1 and value D[i] = V [i]

W [i] , for all i ∈ [n] (the value
density). This is because we can take arbitrary item amounts, and ci units of the original item
is equivalent to ciW [i] units of the new item, as both yield ciV [i] = (ciW [i]) · D[i] value and
ciW [i] = (ciW [i]) · 1 weight. Our new problem is

max
c∈Rn

≥0

∑
i∈[n]

ci ·D[i] subject to
∑
i∈[n]

ci ≤ B. (1)

Let i? ∈ [n] be the index of the item with the largest value density, computed in Line 2 of
Algorithm 1. Thus, Algorithm 1 returns the solution to (1) with ci? = B and ci = 0 for all i 6= i?.
Denote this solution, returned by Algorithm 1, by calg. We claim it is optimal for (1).

To see this, let copt ∈ Rn≥0 optimally solve (1). We transform it into calg and show that our
transformation cannot decrease the value of (1), which implies calg is also optimal for (1).

We now give this transformation. Take any i ∈ [n] where i 6= i?. Moving all copt
i units of weight

from i to i? cannot decrease (1), by Lemma 1 with a1 = copt
i , a2 = 0, b1 = D[i?], and b2 = D[i].

Repeating for each i ∈ [n] transforms copt into a vector that puts all
∑
i∈[n] c

opt
i ≤ B units of

weight on item i?. Thus, it achieves less value in (1) than calg, which puts all B units of weight
allowed on item i?, since D[i?] > 0 by assumption. This proves calg is optimal, as claimed.

This example illustrates a general strategy in greedy algorithms. While we do not know what copt

is, an optimal solution to (1) certainly exists, so it makes sense as a benchmark. On the other
hand, we know exactly what the solution calg is, because we defined an algorithm to produce it.
The rest of the argument gradually shows via a transformation that whatever the vector copt is,
our algorithm’s calg attains at least as good of an objective value in (1), so it is also optimal.

2.2 Total completion time
Lemma 1 generalizes to n variables. Consider the following situation: you now have n “amounts
of items to take” in sorted order a1 ≥ a2 ≥ . . . ≥ an, as well as n “item densities” in sorted order
b1 ≥ b2 ≥ . . . ≥ bn. You are required to take a1 copies of some item (not necessarily the item
with density b1), a2 copies of another item (not necessarily the item with density b2), and so on,
with the goal of maximizing the total weight. Corollary 1 claims that the optimal way to do this
is to take a1 copies of the densest item, a2 copies of the second most dense, and so forth. It also
states that the worst way to do this is by reversing the order of items taken.

Corollary 1 (Rearrangement inequality). Let a,b ∈ Rn have nondecreasing coordinates, i.e.,
a1 ≥ a2 ≥ . . . ≥ an and b1 ≥ b2 ≥ . . . ≥ bn. Let π : [n]→ [n] be a permutation.1 Then,∑

i∈[n]

aibi ≥
∑
i∈[n]

aibπ(i) ≥
∑
i∈[n]

aibn+1−i.

1A permutation is a one-to-one function from [n] → [n]: if n = 3, π(1) = 2, π(2) = 1, π(3) = 3 is a permutation.

2

Proof. Suppose for the sake of contradiction that the first inequality above is false. Then π cannot
be the identity permutation (which sets π(i) = i for all i ∈ [n]), so there is at least one inversion
(i, j) ∈ [n]× [n], with π(i) > π(j) but i < j. Swapping π(i) and π(j) can never decrease our value∑
i∈[n] aibπ(i), by Lemma 1. Repeating until π agrees with the identity gives a contradiction.

To see the second inequality above, we repeat the same argument but now our goal is to turn
any non-inversion into an inversion. Lemma 1 shows this decreases objective value, and the only
permutation such that every pair of indices is inverted is the reverse of the identity.

We now give an application of Corollary 1 to the total completion time problem. In this problem,
we are given as input T , an Array instance containing n positive numbers representing the durations
of n jobs we wish to complete, so the ith job has a duration of T [i]. We are tasked with assigning
intervals [si, ei] ⊂ R≥0 such that ei − si = T [i] (i.e., enough time has passed that we can service
the ith job), and no two intervals overlap. Our goal is to assign intervals such that∑

i∈[n]

ei, (2)

i.e., the sum of all completion times, is minimized. One motivation for this problem is to maximize
the total “utility” of all jobs. Another perspective is provided by Chapter 4.1, [Eri24]: if we treat
the durations T [i] as the lengths of files to be stored on a tape, and we must scan through the
first ei addresses to finish accessing the ith file, then minimizing 1

n

∑
i∈[n] ei (which is the same as

minimizing (2)) optimizes the average access time of the n files.

We first observe that the optimal choice of intervals spends no idle time: it begins the (i+ 1)th job
immediately after finishing the ith job. Otherwise, removing idle intervals can only decrease the
completion objective (4), since all ei get smaller. Therefore, the optimal solution has the structure:
for some permutation π : [n]→ [n],

eπ(i) =
∑
j∈[i]

T [π(j)]. (3)

In other words, we schedule jobs back-to-back, one at a time according to the permutation π (so
π(1) is the index of the first job serviced, π(2) is the second, and so on), so that the π(i)th job is
completed at a time eπ(i) when all earlier jobs (according to π) have finished.

The only degree of freedom in our solution is now the choice of permutation π. We hence rewrite
the problem as

min
π:[n]→[n] is a permutation

f(π), where f(π) :=
∑
i∈[n]

∑
j∈[i]

T [π(j)]. (4)

We claim that the optimal π is the one that sorts T in nondecreasing order, i.e., we service the
shortest job first. Assume for simplicity that T has already been sorted in this way, so our goal is
to prove that the identity π is optimal for (4). We prove this by rewriting (4) in a simpler way:

f(π) =
∑
j∈[i]

T [π(j)] = T [π(1)] + (T [π(1)] + T [π(2)]) + (T [π(1)] + T [π(2)] + . . .+ T [π(n)])

= n · T [π(1)] + (n− 1) · T [π(2)] + . . .+ T [π(n)]

=
∑
i∈[n]

(n+ 1− i) · T [π(i)].

(5)

In other words, we need to pay some duration n times, another duration n − 1 times, and so on.
Now the claim that the identity permutation is optimal follows from Corollary 1, applied with
ai = T [i] and bi = i for all i ∈ [n]. In particular, a and b are sorted in reverse order to each other,
so Corollary 1 shows that the minimal way to pair up their coordinates is by reversing the order
of b, which is exactly achieved by (5) with the identity permutation π(i) = i.

3

2.3 Fractional 0-1 knapsack
We finally consider a variant of the fractional unbounded knapsack problem: the fractional 0-1
knapsack problem, where the goal is to solve

max
c∈[0,1]n

f(c) subject to
∑
i∈[n]

ciW [i] ≤ B, where f(c) :=
∑
i∈[n]

ciV [i]. (6)

Note that in (6), the count vector c has c ∈ [0, 1]n, i.e., we are still allowed to take fractional
amounts, but we cannot take more than one unit of any item. We make the simplifying assumption
that all value densities V [i]

W [i] are distinct, since otherwise we can lump together all of the items with
the same density into a single item, which does not change the problem.

This problem appears more challenging than either of those we previously handled. Unlike the
unbounded variant in Section 2.1, we cannot simplify so that all weights are identical, because the
amount of each item that is available to us matters. Moreover, the amounts we can take change
depending on which items are taken, so Corollary 1 does not quite apply either. Nonetheless, you
may guess that we should prioritize taking value-dense items first, just like in the unbounded case.
Indeed, we claim that the following greedy Algorithm 2 solves this problem optimally.

Algorithm 2: FracZOKnapsack(W,V,B)

1 Input: W,V , two Array instances containing n numbers in R>0, B > 0

2 Sort W,V similarly, so that items i ∈ [n] are in decreasing order by V [i]
W [i]

3 (b, v, i)← (B, 0, 1)
4 while b−W [i] ≥ 0 and i ∈ [n] do
5 (b, v, i)← (b−W [i], v + V [i], i+ 1)
6 end
7 if i == n+ 1 then
8 return v
9 end

10 else
11 return v + b

W [i] · V [i]

12 end

Algorithm 2 first sorts the items by value density, so that the most value-dense item comes first.
It then repeatedly takes entire items until either taking the next item would go over the weight
budget, or all items are taken. In the former case, it takes as much of the last item as possible.

Assume that
∑
i∈[n]W [i] > B, as otherwise Algorithm 2, which produces the all-ones vector in

this case, is clearly optimal (no feasible c can be larger than 1 entrywise). Let i? ∈ [n] be the value
of i when Algorithm 2 terminates. Algorithm 2 then attains value f(calg) for (6), where

calg
i =


1 i ∈ [i? − 1]
B−

∑
i∈[i?−1]W [i]

W [i?] i = i?

0 i ∈ [n] \ [i?]

. (7)

Suppose for the sake of contradiction that calg is not optimal for (6). Let copt ∈ [0, 1]n instead be
optimal for (6). We obtain a contradiction by transforming copt into a different vector c′ achieving
a strictly greater total value, i.e., f(c′) ≥ f(copt), without affecting the total weight taken.

To do so, we claim that there are indices j, k with 1 ≤ j < k ≤ n such that copt
j < calg

j and
copt
k > calg

k . Assuming this is true, the idea is to slightly shift some weight from item k to item j
(which has higher value density), so that the budget is not violated but we have strictly greater
value. This contradicts the assertion that copt 6= calg is optimal.

More formally, let ∆ := min(copt
k − calg

k , W [j]
W [k] · (c

alg
j − copt

j)) > 0, and define

c′i =


copt
j + ∆ · W [k]

W [j] i = j

copt
k −∆ i = k

copt
i i 6∈ {j, k}

.

4

That is, the only coordinates of copt that changed were the jth and kth coordinates, and by our
choice of ∆, we still have c′ ∈ [0, 1] since c′k ≥ calg

k and c′j ≤ calg
j . The total weight change is(

∆ · W [k]

W [j]

)
·W [j]−∆ ·W [k] = 0,

so c′ stays within the budget as it achieves the same total weight as copt. However, c′ yields a
higher objective value than copt in (6), since the jth item has a higher value density than the kth:

f(c′)− f(copt) =

(
∆ · W [k]

W [j]

)
· V [j]−∆ · V [k] =

(
V [j]

W [j]
− V [k]

W [k]

)
·∆ ·W [k] > 0.

Therefore, as long as such indices j, k exist, no other count vector copt can be optimal.

We conclude by proving our earlier claim about the existence of j, k. Let j be the first index where
calg
j 6= copt

j . By construction, copt
j < calg

j , since calg puts the maximum possible count on each
index sequentially. So, there must be k > j where copt

k > calg
k . Otherwise, copt

k ≤ calg
k for all

k ∈ [n], and hence copt cannot attain greater value in (6), contradicting its definition.

3 Exchange arguments
The examples developed in Section 2 follow a similar structure. In each case, our goal was to argue
that a solution xalg produced by a greedy algorithm was optimal for some objective function f .
For example, in Section 2.2 we reduced the problem to the form (4), an optimization problem in
an objective f over permutations π : [n]→ [n], and claimed that the permutation πalg sorting jobs
in nondecreasing duration order was optimal. Similarly, in Section 2.3, we claimed that calg in (7)
was optimal among c ∈ [0, 1]n meeting a weight constraint, for the objective f in (6).

We proved optimality of the solutions xalg in each case by first assuming the existence of an
optimal solution, xopt, and comparing f(xopt) to f(xalg). Of course, our goal is to establish that
f(xalg) ≥ f(xopt) (or vice versa, if our objective is minimization of f rather than maximization).
We saw a few different ways to prove this type of bound.

In Section 2.1, we gradually transformed xopt into xalg, and showed f only improved after each
step of the transformation. In Section 2.2, we applied Corollary 1, which is really just an iterative
application of Lemma 1 that transforms a permutation into the optimal permutation. Finally,
in Section 2.3, we showed how any solution unequal to our greedy algorithm’s choice could be
transformed into a better solution, preventing any other solution from being optimal.

These are examples of exchange arguments that transform a purported optimal solution xopt into
our solution xalg. These exchange-based transformations can be partial or full, as well as piece-by-
piece or all-at-once, but in each case the goal is to argue that the greedy solution xalg does better
than any other candidate xopt. One can either achieve this by proving that f continually does not
get worse until our transformation is complete (as done in Sections 2.1 and 2.2), in which case we
have shown that xalg indeed better candidate than xopt, or by directly contradicting the definition
of xopt by demonstrating a strict objective value improvement (as done in Section 2.3). We give
several additional examples of exchange arguments in this section.

3.1 Weighted total completion time
We first consider a weighted variant of the total completion time problem from Section 2.2. Here,
in addition to the input Array T containing the duration times of n jobs, we are also given W , an
Array instance containing n positive numbers representing the weights of our jobs. We are tasked
with assigning non-overlapping intervals [si, ei = si + T [i]] ⊂ R≥0, with the goal of minimizing∑

i∈[n]

eiW [i].

That is, we care about minimizing the weighted sum of completion times.

5

As before, clearly there is no advantage to idle time, so the optimal solution is to choose a permu-
tation π : [n] → [n] such that the completion time relationship (3) holds. Following (4), our new
optimization problem is:

min
π:[n]→[n] is a permutation

f(π), where f(π) :=
∑
i∈[n]

W [π(i)]

∑
j∈[i]

T [π(j)]

 . (8)

We claim that sorting W,T similarly such that T [i]
W [i] is in nondecreasing order is optimal. Assume

that the lists have already been sorted in this way, in which case our claim is that the identity
permutation π is optimal for (8). Our proof will not be quite as straightforward as in Section 2.2,
since Corollary 1 does not apply directly. This is because the choice of π dictates the weight of
each job; unlike in (5), we are not just taking n copies of some duration T [π(1)], n − 1 copies of
some other duration, and so on, as the number of copies changes depending on π.

Nonetheless, we can use a similar strategy as in the proof of Corollary 1. Recall that the identity
permutation is the unique permutation without inversions. We would like to show that undoing
inversions in π decreases the value of f(π), the same idea that was used to prove Corollary 1.
However, this strategy seems more complicated here, due to the fact that swapping two intervals
affects the completion times of all intervals in between, significantly altering the formula (8).

We fix this issue with a stronger observation about non-identity permutations.

Lemma 2. Let π : [n] → [n] be a non-identity permutation. Then π has an adjacent inversion,
i.e., a pair of indices (i, i+ 1) such that π(i) > π(i+ 1).

Proof. Suppose π has no adjacent inversion. Then π(1) ≤ π(2) ≤ . . . ≤ π(n). Because π is a
permutation, the only possible π satisfying these inequalities is the identity, a contradiction.

Lemma 2 dramatically simplifies our argument: by undoing only adjacent inversions, we localize
the change in the objective. Namely, swapping two adjacent intervals π(i) and π(i + 1) does not
affect the completion time of any other interval, so only two terms in the formula (8) change. We
are now ready to prove that the identity permutation is optimal for (8) via this approach.

Suppose that π is optimal for (8), and suppose it is not the identity permutation. By Lemma 2,
there is an adjacent inversion (i, i + 1), i.e., π(i) > π(i + 1) for some i ∈ [n − 1]. Because we
assumed indices were sorted by T [i]

W [i] , π(i) > π(i+ 1) means that

T [π(i)]

W [π(i)]
≥ T [π(i+ 1)]

W [π(i+ 1)]
. (9)

Let π′ be identical to π, except π′(i + 1) = π(i) and π′(i) = π(i + 1), i.e., it swaps the ith and
(i+ 1)th intervals and leaves the order unchanged otherwise. We compute

f(π)− f(π′) =
∑
i∈[n]

W [π(i)]

∑
j∈[i]

T [π(j)]

−∑
i∈[n]

W [π′(i)]

∑
j∈[i]

T [π′(j)]


= W [π(i+ 1)]

 ∑
j∈[i+1]

T [π(j)]

+W [π(i)]

∑
j∈[i]

T [π(j)]


−W [π(i+ 1)]

 ∑
j∈[i−1]

T [π(j)] + T [π(i+ 1)]

−W [π(i)]

 ∑
j∈[i+1]

T [π(j)]


= W [π(i+ 1)]T [π(i)]−W [π(i)]T [π(i+ 1)] ≥ 0,

where in the last line we used (9). Thus, undoing an adjacent inversion cannot increase the
objective value. After undoing all adjacent inversions, the contrapositive of Lemma 2 shows that
we end up at the identity permutation, which shows the identity is optimal for (8) as claimed.

6

3.2 Minimizing lateness
We next consider a related problem where a similar strategy applies. In the minimizing lateness
problem, our task is again to schedule n jobs, with positive durations given by an input Array T ,
into non-overlapping intervals [si, ei = si + T [i]] ⊂ R≥0. We are given an additional input another
Array instance D containing n positive numbers, representing job deadlines. Our goal is to assign
intervals that minimize the maximum lateness of any of our jobs: maxi∈[n] ei −D[i].

It is clear that idle time can only increase the maximum lateness, so we again rephrase the prob-
lem in terms of permutations. As before, if we schedule the jobs back-to-back according to a
permutation π, the completion times are given by (3). Thus, our goal is to compute

min
π:[n]→[n] is a permutation

f(π), where f(π) := max
i∈[n]

eπ(i)−D[π(i)] = max
i∈[n]

∑
j∈[i]

T [π(j)]−D[π(i)]. (10)

We claim that if T,D are sorted similarly such that D is in nondecreasing order, the identity
permutation π is optimal for (10). We prove this using a similar argument as in Section 3.1.

Again suppose π is not the identity, so Lemma 2 shows π has an adjacent inversion (i, i+ 1), i.e.,
π(i) > π(i+ 1). By assumption, this means D[π(i)] ≥ D[π(i+ 1)]. Let π′ be the permutation that
swaps π(i) and π(i+ 1), leaving all other entries unchanged. We claim f(π′) ≤ f(π).

Let j be the maximizing argument in (10) for f(π′), i.e.,

f(π′) = eπ′(j) −D[π′(j)]

is the lateness of the jth interval. If j 6∈ {i, i+ 1}, then π′(j) = π(j) and eπ′(j) = eπ(j), so that

f(π′) = eπ′(j) −D[π′(j)] = eπ(j) −D[π(j)] ≤ max
k∈[n]

eπ(k) −D[π(k)] = f(π).

In other words, swapping i, i′ only creates more opportunities to be later than the jth interval.

This leaves the case where j ∈ {i, i+ 1}. To handle this case it suffices to show

max (A+ T [π(i+ 1)]−D[π(i+ 1)], A+ T [π(i)] + T [π(i+ 1)]−D[π(i)])

≤ max (A+ T [π(i)]−D[π(i)], A+ T [π(i)] + T [π(i+ 1)]−D[π(i+ 1)]) ,
(11)

where we denote the sum of durations of the jobs completed before π(i) or π(i+ 1) by

A :=
∑

j∈[i−1]

T [π(j)].

In other words, (11) asks us to show the new maximum lateness between the intervals i, i+ 1 is at
most the previous maximum lateness between these intervals.

Finally, (11) is true since its right-hand side’s second term dominates both terms on the left-hand
side, using our assumption that D[π(i)] ≥ D[π(i+ 1)], because i was an adjacent inversion:

A+ T [π(i+ 1)]−D[π(i+ 1)] ≤ A+ T [π(i)] + T [π(i+ 1)]−D[π(i+ 1)],

A+ T [π(i)] + T [π(i+ 1)]−D[π(i)] ≤ A+ T [π(i)] + T [π(i+ 1)]−D[π(i+ 1)].

We have thus shown using (11) that undoing adjacent inversions improves our objective (10).
Repeatedly undoing such inversions results in the identity permutation, which is hence optimal.

4 Greedy stays ahead
Thus far, our proofs of optimality have relied on exchange arguments: repeatedly finding pairs of
choices to exchange that result in any purportedly optimal solution eventually becoming our greedy
solution, while improving objectives at each step. While this idea is straightforward, applying it
in different scenarios can take some ingenuity (e.g., should we apply Corollary 1 “all at once,” or
should we instead try to make local improvements based on adjacent inversions)?

7

In this section, we develop an alternative proof strategy introduced in [KT05], Chapter 4 as the
“greedy stays ahead” argument. This strategy is much more formulaic to apply, yet captures the
optimality of a wide range of greedy algorithms. The idea is to inductively show that if an algorithm
must make n choices sequentially, then after any number of i ∈ [n] choices, the greedy algorithm
has done the best it could up to that point (compared to any other algorithm that has also made
i choices). This “staying ahead” property will then let us continue our induction, and once all n
choices have been made, we can conclude the greedy algorithm is optimal.

We give several examples that formalize this idea in this section.

4.1 Scheduling revisited
To begin, we revisit the scheduling problem from Section 3.1, Part III. The setup is exactly the
same as before: we wish to schedule a maximum-size set of non-overlapping intervals, given as L,
an Array of n tuples (`i, ri). In other words, we wish to find

max
S⊆[n]

f(S) subject to S is non-overlapping, where f(S) := |S|.

We claim that the following greedy Algorithm 3 succeeds in solving this problem.

Algorithm 3: GreedyScheduling(L)

1 Input: L, an Array instance containing n tuples {(`i, ri)}i∈[n] in R2 with `i < ri for all i ∈ [n]
2 Sort L in non-decreasing order by ri, i.e., r1 ≤ r2 ≤ . . . ≤ rn
3 (count, i)← (1, 1)
4 for 2 ≤ j ≤ n do
5 if `j > ri then
6 (count, i)← (count + 1, j) // Include interval j.
7 end
8 end
9 return count

Algorithm 3 maintains a current index i, pointing to the last interval included in the set S. It
scans through the intervals in L, trying to find the first index j where `j > ri, so that the jth
interval does not overlap with the ith. It includes the first such interval it finds, updating i and
the count appropriately. The algorithm terminates after we have looped through all of L.

We prove optimality of Algorithm 3 using a “greedy stays ahead” argument. To motivate it, we
think of any scheduling algorithm as making a sequence of choices: which indices to include, one
by one. Without loss of generality, we choose these indices in increasing order according to their
right endpoint. The idea is to show that after any i choices, the last interval chosen by Algorithm 3
stays ahead of the last interval chosen by any other algorithm.

We now formalize these ideas. Let Salg ⊆ [n] be the indices included by Line 6 of Algorithm 3.
We denote these indices Salg = {a1, a2, . . . , ak}, sorted so that a1 < a2 < . . . < ak.

To implement the argument, let Sopt be an optimal set of non-overlapping interval indices, denoted
Sopt := {b1, b2, . . . , bm} sorted so that b1 < b2 < . . . < bm. By optimality of Sopt, and because Salg

is a non-overlapping set by construction, we must have m = |Sopt| ≥ |Salg| = k. Our main claim
is that for all i ∈ [k], ai ≤ bi, or equivalently the ith interval in Salg ends before the ith interval
in Sopt ends, because we sorted L in non-decreasing order by right endpoint. This is the sense in
which the greedy solution from Algorithm 3 stays ahead of any other solution.

We prove ai ≤ bi via induction. Because we sorted by right endpoint, an equivalent claim is
rai ≤ rbi . For the base case, Algorithm 3 always sets a1 = 1 (taking the first interval), so a1 ≤ b1.

Next, suppose that ai ≤ bi for some i ∈ [n]. Since the bthi+1 interval does not overlap with the bthi
interval, we have `bi+1

> rbi . However, by induction this implies `bi+1
> rai . This means that bi+1

was a valid interval to include in Salg after taking our first i choices, as it begins after the interval
[`ai , rai] ends. Because Algorithm 3 includes the index of the first available interval after [`ai , rai]
ends as ai+1, we can conclude the desired ai+1 ≤ bi+1.

8

Let us see why this claim implies k = m. Suppose for contradiction that m > k, and consider the
subset Salg ∪ {bk+1}. We claim that this is also a non-overlapping subset, because our inductive
hypothesis ak ≤ bk implies rak ≤ rbk , and `bk+1

> rbk by construction. Thus, `bk+1
> rak , so we

could have added the bthk+1 interval to Salg, a contradiction because when Algorithm 3 terminates,
there were no more available intervals. Thus, k = m and Salg is optimal.

4.2 Balanced parentheses revisited
We next revisit the balanced parentheses problem from Section 2.3, Part III. Recall that our
previous dynamic programming-based approach required O(n3) time. In this section we will solve
a more complex variant of the problem with an O(n)-time greedy algorithm.

The variant we consider takes as input a length-n string S consisting of the characters ‘(’ and ‘)’,
and outputs the minimum number of characters that must be flipped for S to be become balanced
(cf. Section 2.3, Part III for the definition of balanced). Note that S was balanced to begin with
iff the output to this new variant is 0, so this problem is strictly harder than our previous variant.
As before, we assume n is even, as otherwise the problem is impossible.

We introduce one piece of helpful notation: for any string A consisting of ‘(’ and ‘)’ characters, let
surplus(A) denote the number of ‘(’ characters minus the number of ‘)’ characters in A.

To approach this problem, we begin by making two simple observations.

Lemma 3. Let B ∈ {‘(’, ‘)’}n be any balanced length-n parentheses string. For any i ∈ [n], let
B[: i] denote the prefix of B consisting of the first i characters, and let B[i :] denote the suffix
consisting of the last n− i+ 1 characters. Then,

surplus(B[: i]) ≥ 0, surplus(B[i :]) ≤ 0, for all i ∈ [n]. (12)

Proof. To see the first condition in (12), if any prefix has more ‘)’ characters than ‘(’ characters, it
is clear that some ‘)’ characters must remain unmatched (as they can only be matched to preceding
‘(’ characters), which would contradict B being balanced. Similarly, any suffix B[i :] must have
surplus(B[i :]) ≤ 0, else some ‘(’ character must go unmatched.

We can now describe our greedy algorithm for solving our balanced parentheses variant.

Algorithm 4: BalParMinFlips(S)

1 Input: S ∈ {‘(’, ‘)’}n
2 (flips, surplus)← (0, 0)
3 for i ∈ [n] do
4 if S[i] == ‘(’ then
5 surplus← surplus + 1

6 end
7 else
8 if surplus > 0 then
9 surplus← surplus− 1

10 end
11 else
12 flips← flips + 1
13 surplus← surplus + 1

14 end
15 end
16 end
17 return flips + 1

2 · surplus

We briefly explain Algorithm 4. Lines 3 to 16 take a pass over S, maintaining a counter of the
current surplus of ‘(’ characters compared to ‘)’ characters. Whenever the surplus is about to
become negative due to encountering a ‘)’ when the surplus is 0 (i.e., the branch in Lines 11 to 14),
the algorithm flips this ‘)’ character to a ‘(’ character immediately and continues. This flipping

9

rule is motivated by the first condition in (12): the surplus of any prefix must stay nonnegative,
so the algorithm greedily flips characters to maintain this invariant.

We now prove optimality of Algorithm 4 using a greedy stays ahead argument. To describe the
sense in which Algorithm 4 “stays ahead” we require one additional definition. Say that a length-i
parentheses string F is feasible if it obeys the following rule:

surplus(F [: j]) ≥ 0 for all j ∈ [i]. (13)

Note that any balanced parentheses string is feasible, by the first condition in (12).

We claim that for all i ∈ [n], Algorithm 4 makes the fewest flips possible amongst the first i
characters to ensure that S[: i] becomes feasible (i.e., it stays ahead of the number of flips used by
any other balancing algorithm). To ease notation, let algi denote the value of flips in Algorithm 4
after the first i loops of Lines 3 to 16, and let opti denote the fewest flips necessary (made by any
algorithm) within S[: i] to ensure it becomes feasible. Then our goal is to establish

algi ≤ opti, for all i ∈ [n]. (14)

We prove (14) by induction. For the base case i = 1, the claim follows because Algorithm 4 flips
the first character iff it is a ‘)’, which is clearly necessary in any feasible string.

For the inductive step, assume that algi ≤ opti. If the algorithm enters either of the branches on
Lines 4 to 6 or Lines 8 to 10, then algi+1 = algi. Moreover, clearly opti+1 ≥ opti, because any flips
that make S[: i+ 1] feasible must at least make S[: i] feasible. Thus, algi+1 ≤ opti+1 as claimed.

It remains to discuss the case where Algorithm 4 enters the branch in Lines 11 to 14 on the (i+1)th

loop. Suppose for contradiction that opti+1 < algi+1 = algi + 1. The key is to observe that

2 · algi = −surplus(S[: i]), (15)

because every flip made amongst the first i characters increases the surplus by 2, and the surplus
of S[: i] after all the flips made by Algorithm 4 in the first i loops is 0 (else we would have passed
the check on Line 8). Thus, the original surplus of S[: i] is precisely −2 · algi. Now, if we use less
than algi + 1 flips amongst S[: i+ 1], the resulting surplus of the first i+ 1 characters is

surplus(S[: i+ 1]) + 2 · opti+1 ≤ surplus(S[: i+ 1]) + 2 · algi
= surplus(S[: i+ 1])− surplus(S[: i]) = −1.

The only inequality used the assumption opti+1 < algi + 1, and the second line used (15) and the
fact that S[i+ 1] = ‘)’. This contradicts the feasibility of the new prefix of length i+ 1, because it
does not have a nonnegative surplus, and thus opti+1 ≥ algi+1.

Finally, let us see why (14) shows Algorithm 4 solves the problem. Let i? ∈ [n] be the last index
that Algorithm 4 flipped from a ‘)’ to a ‘(’. Just before this point, the surplus is 0, so the final
value of surplus when Algorithm 4 returns is the surplus of the original remaining suffix plus 2 (to
account for the flipped S[i? + 1]), i.e., at termination,

surplus = surplus(S[i? :]) + 2, and flips = algi? .

Our proof of (12) shows that any balancing algorithm must correct the prefix S[: i?−1] to become
feasible, and flip S[i?]. Moreover, (12) also shows that any balancing algorithm must then correct
S[i? :] so that its surplus becomes nonpositive. We showed in (14) that the number of flips used by
Algorithm 4, i.e., algi? , is optimal for the former. For the latter, every flip decreases the surplus
by 2, and hence we need 1

2 · (surplus(S[i? :]) + 2) additional flips. Thus, the fewest flips needed is
≥ flips + 1

2 · surplus for the values at termination, as achieved by Algorithm 4.

4.3 Minimum spanning tree
We conclude with a classical example combining ideas from both exchange and greedy stays ahead.

In the minimum spanning tree (MST) problem, we are given as input a connected undirected graph
G = (V,E,w). Our goal is to output a spanning tree T ⊆ E with minimum total weight, i.e., a

10

Algorithm 5: MSTConceptual(G)

1 Input: G = (V,E,w), a connected undirected graph
2 Sort E in nondecreasing order by weight
3 T ← ∅
4 for e ∈ E do
5 if T ∪ {e} contains no cycle then
6 T ← T ∪ {e}
7 end
8 end
9 return T

tree subgraph of G achieving the smallest objective value defined by f(T) :=
∑
e∈T we. Recall

from Section 4, Part I that a graph is a forest iff it contains no cycles, and a tree is a maximal
forest in the sense that it has n− 1 edges, and any graph with ≥ n edges must contain a cycle. We
hence consider the following, very natural conceptual greedy algorithm for MST.

Algorithm 5 maintains a current set of edges T , and repeatedly tries to add edges to T , starting
with the lowest-weight edge. If the edge currently under consideration can be added to T without
creating a cycle, we greedily include it, and otherwise we move on to the next edge. Deferring
implementation details to a later discussion, we claim that Algorithm 5 solves the MST problem
correctly. This fact, attributed to [JBK56] so that Algorithm 5 is called Kruskal’s algorithm, is
perhaps quite surprising given the simplicity of our algorithm. We prove optimality of Algorithm 5
in this section, and show how it is representative of a more general phenomenon in Section ??.

It is perhaps not even obvious that Algorithm 5 returns a tree. To see this, suppose for contradic-
tion that at termination, T contains at least two distinct connected components. Then, there is
some edge e ∈ E joining these two components, else G would not be connected. When e is first
encountered, T ∪ {e} contains no cycle, since T only grows in size over time. Hence, e would have
been included by Line 6, a contradiction to the components being disconnected. What remains is
to show that the resulting T is optimal for the MST problem.

In fact, we will prove a stronger claim. We claim that Algorithm 5 solves the minimum spanning
forest problem correctly at every step: whenever |T | = k in the execution of Algorithm 5 for
any k ∈ [n − 1], the weight of T is optimal among any forest subgraph of G with k edges. This
claim is highly reminiscent of the “greedy stays ahead” argument from Section 4.1. Applying this
strengthened claim with k ← n− 1 proves optimality of Algorithm 5 for MST.

To prove our stronger claim, we require a helper fact that underlies our exchange argument.

Lemma 4. Let G = (V,E,w) be an undirected graph, and let F ⊆ E, F ′ ⊆ E be two forest
subgraphs of G with |F | < |F ′|. Then there is some e ∈ F ′ such that F ∪ {e} remains a forest.

Proof. Let |F ′| = n − c′ and |F | = n − c for some 1 ≤ c′ < c. By Lemma 16, Part I, letting
wF ∈ RF denote the restriction of w to F , the subgraph (V, F,wF) has c connected components.
Similarly, the subgraph (V, F ′,wF ′) has c′ < c connected components.

We claim that some edge e ∈ F ′ joins two connected components in F . Indeed, if this were not
the case, then every edge in F ′ lies in some connected component in F . The number of connected
components in F ′ can thus only increase from F (each connected component in F either stays
whole or is broken up into multiple pieces), i.e., c′ ≥ c, a contradiction.

So, some e ∈ F ′ joins two connected components in F . Its inclusion cannot create a cycle in F , as
otherwise there was already a path between the two connected components.

Let us see how Lemma 4 helps us conclude our argument. For convenience, denote the edges added
to T in Algorithm 5 by {e1, e2, . . . , en−1}, where edges are added in sequence, i.e., e1 is added first.
Suppose for contradiction that after adding k edges to T , Algorithm 5 is suboptimal for the first
time. This means that for any j < k, there exists no forest of size j with total weight ≤

∑
i∈[j] wei ,

but that there exists a forest F ′ ⊆ E with |F ′| = k and
∑
e∈F ′ we <

∑
i∈[k] wei .

11

We obtain a contradiction via Lemma 4. Denote the edges in F ′ by {e′1, e′2, . . . , e′k}. Let F be the
forest consisting of {e1, e2, . . . , ek−1}. Then Lemma 4 states that there is some edge, without loss
of generality e′k, such that F ∪ {e′k} is a forest. It must be the case that we′k

< wek , as otherwise,∑
e∈F

we = wek +
∑

i∈[k−1]

wei ≤ we′k
+

∑
i∈[k−1]

we′i
=
∑
e′∈F

we′ ,

violating our earlier assumption
∑
e∈F ′ we <

∑
i∈[k] wei . However, we′k

< wek also gives a contra-
diction, since Algorithm 5 should have picked e′k instead of ek in Line 6, as e′k has strictly smaller
weight than ek (so it is encountered earlier) and also does not form a cycle when added to F .

Implementation details. We have shown that Algorithm 5 is optimal for the MST problem,
but as written, it appears somewhat inefficient. However, letting n := |V | and m := |E|, there is
a simple implementation of Algorithm 5 that runs in O(m log(n)) time, presented as Algorithm 6.

Algorithm 6: MST(G)

1 Input: G = (V,E,w), a connected undirected graph with n := |V | and m := |E|
2 Sort E in nondecreasing order by weight
3 C ← Array.Init(n) // Track connected components of all vertices.
4 for i ∈ [n] do
5 C[i]← i // Initialize all connected components to size 1.
6 Si ← Stack.Init()
7 Si.Push(i) // Si includes all vertices in the ith connected component.

8 end
9 T ← ∅

10 for e = (u, v) ∈ E do
11 if C[u] 6= C[v] then
12 T ← T ∪ e // Include edge e just as in Algorithm 5.
13 if |SC[u]| ≥ |SC[v]| then

// Merge smaller connected component C[v] into bigger connected component C[u].
14 for k ∈ [|SC[v]|] do
15 w ← SC[v].Pop()
16 C[w]← C[v]
17 SC[u].Push(w)

18 end
19 end
20 else

// Merge smaller connected component C[u] into bigger connected component C[v].
21 for k ∈ [|SC[u]|] do
22 w ← SC[u].Pop()
23 C[w]← C[v]
24 SC[v].Push(w)

25 end
26 end
27 end
28 end
29 return T

Algorithm 6 explicitly keeps track of the connected component C[v] each vertex v ∈ V belongs
to, throughout the algorithm. It also creates lists (implemented as Stack instances) containing the
members of each connected component. Originally, every vertex is in its own connected component.
When an edge is discovered on Line 11 that would be included in the final tree by Algorithm 5,
Algorithm 6 also includes the edge (because it joins two existing connected components). Algo-
rithm 6 further updates the connected component information it maintains, by merging the smaller
component into the larger one. Because it makes the exact same choices as Algorithm 5, we have
proven Algorithm 6 also correctly produces an MST. We now discuss its runtime.

Sorting the edges in Line 2 takes O(m log(n)) time, where we recalled m ≤ n2 so log(m) =
O(log(n)). The initialization in Lines 10 to 28 takes O(n) time. All steps of the loop from Line 10

12

to 28 run in O(1) time except potentially the merging operations in Lines 13 to 19 and Lines 20
to 26. These operations pay O(1) time per vertex that needs to change connected components.

Observe that every time a vertex changes connected components, it moves from a smaller com-
ponent to a larger component, so the size of its connected component at least doubles with each
move. This can only happen O(log(n)) times, so the algorithm can only spend O(log(n)) time
merging any vertex in Lines 13 to 19 and Lines 20 to 26. The overall cost of merging operations is
thus O(n log(n)), and because we assume G is connected, m ≥ n−1 so O(n log(n)) = O(m log(n)).
Thus, the overall runtime of Algorithm 6 is O(m log(n)) as claimed.

Improvements. The MST problem admits a variety of efficient algorithms, with various proper-
ties that may be preferable to Algorithm 6. The first such algorithm is due to Borůvka [Bor26].
Borůvka’s algorithm has the added benefit of being easily parallelizable, as it tries to add as many
cross-component edges as possible in each step, and each connected component can be handled by
its own parallel thread. Another famous MST algorithm is Prim’s algorithm [Pri57], which slowly
grows a tree in each step by including the minimum-weight edge involving a non-tree vertex.

Using more sophisticated techniques, [KKT95] designed a randomized MST algorithm that runs
in O(m) time. Moreover, [Cha00] gave a deterministic MST algorithm that runs in O(mα(m,n))
time, where α(m,n) is an extremely slow-growing function known as the inverse Ackermann’s
function. The current state-of-the-art is by [PR02], who surprisingly designed an MST algorithm
achieving the optimal runtime for the problem, even if the asymptotic nature of that runtime is
not yet known. All of these algorithms work in a restricted computational model where the only
numerical operation allowed is comparing two edge weights to determine which is larger.

5 Stable matching
We conclude these notes with one of the most famous applications of greedy algorithms: stable
matching. In the simplest variant of this problem, there are n applicants who we wish to pair
with n job openings, such that every applicant is matched with exactly one job and every job is
matched with exactly one applicant (this is called a perfect matching). The input to the problem
is 2n different lists: each applicant submits a ranked order list of their preferences among the jobs,
and each job opening submits a ranked order list of their preferences among the applicants. To
simplify the problem, we assume that there are no ties in the preference orderings.

Our goal is to return a matching between jobs and applicants, that is stable in a precise sense.
Essentially, we wish to prevent the following failure mode that can arise after our proposed matching
is announced. Suppose we paired up applicant a with job α,2 and applicant b with job β, but β
preferred a to b, and a preferred β to α. Then, it is reasonable to expect that the job opening β
and the applicant a may cut a backroom deal, where both a and β renege on the job-applicant
pairs given by the matching, and internally pair themselves up instead.

Formally, a matching is stable iff for every potential backroom deal (a, β), where a is assigned the
job α 6= β and β is assigned the applicant b 6= a, either a prefers its actual job assignment α over
β, or β preferred its actual applicant assignment b over a. This implies that at least one of the
parties a or β is disincentivized to make this deal. The stable matching problem asks to return a
stable matching, when given preference orderings of all applicants and job openings as inputs.

This problem has many real-world applications, and indeed, its study was motivated by an algo-
rithm that was already used by the National Resident Matching Program to place U.S. medical
school graduates into residency training programs by the 1950s.3 In Algorithm 7, we present a
surprisingly simple algorithm by Gale and Shapley [GS62] that solves stable matching, which won
a Nobel Prize in Economics in 2012. Before stating the Gale-Shapley algorithm, however, we wish
to briefly motivate why simpler approaches to stable matching do not work.

2For notational clarity, we use English lowercase to denote applicants and Greek lowercase to denote jobs.
3The stable matching problem is sometimes presented in the context of marrying n men and women. We choose

to present the applicant-job opening variant instead for several reasons. First, love is love, so the marriage example is
somewhat dated. Second, we are not aware of any real-world applications of stable matching algorithms to marrying
couples, contrary to the case of jobs. Finally, this presentation decision better highlights the asymmetry between
the two parties, which is relevant when we analyze structural properties of the outputted matching.

13

Perhaps the simplest greedy approach to stable matching (inspired by Sections 2 and 3, which
focused on the progress achieved by undoing inversions) is simply to swap any unstable pairs.
Namely, the algorithm starts with an arbitrary perfect matching, and then repeatedly searches for
unstable pairs (a, α), (b, β), fixing the instability by replacing these pairs with (a, β) and (b, α) in
the matching. It is clear that if this procedure ever terminates, the matching is stable.

Unfortunately, it is possible for this naïve greedy algorithm to never terminate.4 Consider a system
with n = 3, where applicant a has the preference list (most-preferred ranked first) {α, γ, β},
applicant b has the preference list {γ, α, β}, and applicant c has the preference list {α, β, γ}.
Conversely, suppose that the job openings α, β, γ respectively have applicant preference rankings
{b, a, c}, {c, a, b}, and {a, b, c}. If our initial matching is {(a, α), (b, β), (c, γ)}, then undoing the
unstable pairs (b, α), (b, γ), (a, γ), and (a, α) produces the following matchings in sequence:

{(a, α), (b, β), (c, γ)} (b,α)−−−→ {(b, α), (a, β), (c, γ)}
(b,γ)−−−→ {(c, α), (a, β), (b, γ)}
(a,γ)−−−→ {(c, α), (b, β), (a, γ)}
(a,α)−−−→ {(a, α), (b, β), (c, γ)}.

This example shows that swapping unstable matches can lead to a cycle, and therefore may fail to
terminate with a stable matching.

The key idea that leads to breaking these cycles in the Gale-Shapley algorithm is the notion of a
temporary matching, i.e., job offers. Initially, every applicant is unmatched, and we allow the job
openings to make job offers. An applicant is allowed to renege on any temporary match (an offer
they agreed to) and jump to any new offer they prefer. Similarly, if a job opening makes an offer
to an applicant which is later reneged, they can make new offers to unmatched applicants.

We are now ready to state the Gale-Shapley algorithm.

Algorithm 7: StableMatching({Aa}a∈[n], {Jα}α∈[n])
1 Input: Applicant preference lists {Aa}a∈[n] which are permutations of [n] ranking the n job
openings (with most-preferred jobs first), and job opening preference lists {Jα}α∈[n] which are
permutations of [n] ranking the n applicants (with most-preferred applicants first)

2 M ← ∅ // Maintains current list of matched pairs.
3 iα ← 1 for all α ∈ [n] // Each job α ∈ [n] has pointer iα to its favorite applicant who has not yet reneged.
4 while ∃α ∈ [n] with no (a, α) ∈M do
5 a← Jα[iα] // Unmatched job α makes an offer to its current favorite applicant Jα[iα]
6 if ∃β = Aa[j] such that (a, β) ∈M and j > i where α = Aa[i] then
7 M ←M \ {(a, β)} ∪ {(a, α)} // a reneges and temporarily accepts the new offer.
8 iβ ← iβ + 1 // a has rejected the old offer from β.

9 end
10 else if ∃β = Aa[j] such that (a, β) ∈M and j < i where α = Aa[i] then
11 iα ← iα + 1 // a has rejected the new offer from α.

12 end
13 else
14 M ←M ∪ {(α, a)} // a temporarily accepts the new offer.
15 end
16 end
17 return M

There is a fair amount of notation in Algorithm 7, but it is quite straightforward to state what the
algorithm is doing. The algorithm terminates whenever all openings have a matched applicant.

Before termination, in Line 4, the algorithm repeatedly asks any unmatched job opening α to make
an offer to its favorite applicant a = Jα[iα] who has not yet reneged on, or rejected, an offer from

4Credit goes to Donald Knuth, by way of [Eri24], for this example.

14

α. If applicant a is unmatched, they temporarily accept the offer from α on Line 14. Otherwise,
applicant a has already temporarily accepted an offer from some other job opening β. If a prefers
β to its new offer from α, then it rejects the new offer and iα increments due to the rejection
(Line 11). Otherwise, a reneges on its old offer from β, and iβ increments (Lines 7 to 8).

Correctness. It is clear that Algorithm 7 yields a perfect matching, i.e., |M | = n at termination.
This is because otherwise, there is an unmatched applicant, so the loop must continue.

Next, we prove that the matching returned by Algorithm 7 is stable. Suppose for contradiction
that (a, α) and (b, β) are both pairs in the final matching, but a prefers β to α, and β prefers a to
b. The former fact implies that a never received an offer from β, because otherwise a would have
ended up with a job at least as preferred as β. However, β could not make an offer to b before
making an offer to a, as a appears earlier on β’s preference list. This is a contradiction.

Runtime. We now need to address the elephant in the room: how do we know Algorithm 7
terminates at all? To prove that it does, we establish a notion of progress to prove that the loop
from Line 4 to 16 can only run O(n2) times before the algorithm must terminate.

The key observation is that every run of the while loop, involving an unmatched job α and its
current favorite applicant a, either ends with an offer being rejected (Lines 7 or 11), or a new
matching being added to M (Line 14). Thus, in each loop, either one of the pointers {iα}α∈[n]
increments (due to a rejected offer), or the maintained matching M permanently grows in size.
The former type of progress can only happen n2 times, since each pointer lies in the range 1 to n.
Similarly, the latter type of progress can only happen n times, since |M | ≤ n. Additionally, note
that no job opening can ever exhaust its entire preference list without the algorithm terminating,
because once an opening has been rejected by every applicant, every applicant has accepted at
least one job offer. Thus, we have shown that the while loop can only occur n2 +n = O(n2) times.

To implement each run of the loop inO(1) time, we maintain a Queue of all unmatched job openings,
and remove an arbitrary such unmatched job opening from the Queue in each loop beginning on
Line 4. Moreover, we can spend O(n2) time preprocessing the preference lists to also store inverse
lookup lists (so that for a given applicant a ∈ [n] and job opening α ∈ [n], we can look up the
index i ∈ [n] such that Jα[i] = a in O(1) time, as required by Lines 6 and 10).

With these modifications, the overall stable matching algorithm runs in O(n2) time. This is a
linear-time implementation in the size of the input, because it takes O(n2) time to specify all
preference lists. Moreover, we remark that there are worst-case examples of preference lists and
tiebreaking procedures to select unmatched jobs in Line 4 that can cause Algorithm 7 to take
Ω(n2) steps. The easiest such example is if all jobs agree on a preference ordering of applicants,
and all applicants agree on a preference ordering of jobs. If all jobs take turns making offers to the
globally best applicant in reverse order from the applicant’s preference, and the applicant reneges
on all offers except its best, this takes n offers to remove one applicant from the pool. Repeating
for each applicant in turn can result in as many as n(n+1)

2 = Ω(n2) offers being made.

Structural properties. One interesting feature of the Gale-Shapley algorithm is that it works no
matter how we select the unmatched job α to initiate a loop of Lines 4 to 16. This may seem like
a bug: surely our algorithm details are underspecified? Incredibly, it turns out that Algorithm 7
always returns the same stable matching, regardless of how we implement Line 4!

There is a very fundamental reason why this is the case, which we summarize as follows.

Lemma 5. Let M be the matching output by Algorithm 7, using any choice in the selection of an
unmatched job opening in Line 4. Then the following hold.

• For every job opening α ∈ [n], suppose (a, α) ∈M . Then, if M ′ is any stable matching with
respect to the same preference lists, if (b, α) ∈M ′, then α prefers to a to b.

• For every applicant a ∈ [n], suppose (a, α) ∈ M . Then, if M ′ is any stable matching with
respect to the same preference lists, if (a, β) ∈M ′, then a prefers to β to α.

Lemma 5 has a clean interpretation. Say that an applicant a is feasible for a job opening α if
(a, α) ∈M for some stable matchingM , and say that α is feasible for a similarly. Then Algorithm 7
gives each job their best feasible applicant, and gives each applicant their worst feasible job. This

15

also implies that there is only one possible matching that Algorithm 7 can output, because each
job opening has a unique best feasible applicant.

Proof of Lemma 5. We first prove that every job obtains its best feasible applicant, regardless
of how Algorithm 7 is executed. Suppose for the sake of contradiction that M produced by
Algorithm 7 does not pair up some (a, α), where a is the best feasible applicant for α. Because α
ends up with some feasible applicant, it made an offer to a at some point. Thus, a rejected α in
favor of another job, β. Without loss of generality, suppose this is the first time in Algorithm 7
that a best feasible applicant for a job α rejects it for another job β.

Because a is feasible for α, there is some stable matching M ′ where (a, α) and (b, β) are paired,
obtaining a contradiction. We claim that (a, β) is an unstable pair. We have seen that a prefers β
to α, as this choice was made in Algorithm 7. Moreover, if β preferred b to a, then in executing
Algorithm 7, for β to make an offer to a, bmust have already rejected β. This is impossible, because
b is feasible for β, and (a, α) was assumed to be the first instance of a best feasible rejection. Thus,
β prefers a to b, concluding our proof that M ′ is in fact unstable if a ever rejects α.

Next, we prove the other part: that every applicant receives their worst feasible job. Suppose for
the sake of contradiction that M produced by Algorithm 7 pairs up (a, α), where α is not the
worst feasible job for a. Then there is some stable matching M ′ where a is paired up with β, that
is disliked compared to α. Moreover, suppose that (b, α) ∈ M ′. Then we claim α prefers a to
b: we already know from earlier that a is the best feasible applicant for α, and b is some feasible
applicant. It follows that (a, α) is unstable in M ′, a contradiction.

16

Further reading
For more on Sections 2.1 and 2.3, see Chapter 15.2, [CLRS22].

For more on Section 2.2, see Chapter 4.1, [Eri24].

For more on Section 3.1, see Chapter 13, [Rou22].

For more on Section 3.2, see Chapter 4.2, [KT05].

For more on Section 4.1, see Chapter 15.1, [CLRS22] or Chapter 4.2, [Eri24] or Chapter 4.1, [KT05].

For more on Section 4.3, see Chapter 21, [CLRS22] or Chapter 7, [Eri24] or Chapter 4.5, [KT05]
or Chapter 15, [Rou22].

For more on Section 5, see Chapter 25.2, [CLRS22] or Chapter 4.5, [Eri24] or Chapter 1.1, [KT05].

References
[Bor26] Otakar Borůvka. O jistém problému minimálním. Prće Mor. Přírodověd. Spol. V Brně

III, 3:37–58, 1926.

[Cha00] Bernard Chazelle. A minimum spanning tree algorithm with inverse-ackermann type
complexity. J. ACM, 47(6):1028–1047, 2000.

[CLRS22] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms, Fourth Edition. The MIT Press, 2022.

[Eri24] Jeff Erickson. Algorithms. 2024.

[GS62] David Gale and Lloyd S. Shapley. College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1):9–14, 1962.

[JBK56] Jr. Joseph B.K̃ruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical Society, 7(1):48–50, 1956.

[KKT95] David R. Karger, Philip N. Klein, and Robert Endre Tarjan. A randomized linear-time
algorithm to find minimum spanning trees. J. ACM, 42(2):321–328, 1995.

[KT05] Jon Kleinberg and Éva Tardos. Algorithm Design. 2005.

[PR02] Seth Pettie and Vijaya Ramachandran. An optimal minimum spanning tree algorithm.
J. ACM, 49(1):16–34, 2002.

[Pri57] Robert C. Prim. Shortest connection networks and some generalizations. Bell System
Technical Journal, 36(6):1389–1401, 1957.

[Rou22] Tim Roughgarden. Algorithms Illuminated. Soundlikeyourself Publishing, 2022.

17

	Introduction
	Rearrangement
	Fractional unbounded knapsack
	Total completion time
	Fractional 0-1 knapsack

	Exchange arguments
	Weighted total completion time
	Minimizing lateness

	Greedy stays ahead
	Scheduling revisited
	Balanced parentheses revisited
	Minimum spanning tree

	Stable matching

